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A new approach to the design of digital phase locked loops (DPLLs), using estimation
theory concepts in the selection of a loop filter, is presented. The key concept is that the
DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The
estimator provides recursive estimates of phase, frequency, and higher order derivatives,
while the predictor compensates for the transport lag inherent in the loop. This decom-
position results in a straightforward loop filter design procedure, enabling use of tech-
niques from optimal and sub-optimal estimation theory. A design example for a particu-
lar cholce of estimator is presented, followed by analysis of the associated bandwidth,
gain margin, and steady state errors caused by unmodeled dynamics. This approach is
under consideration for the design of the DSN Advanced Receiver Carrier DPLL.

I. introduction

A phase locked loop (PLL) is a feedback system that tracks
the phase of a received signal. A typical PLL structure is
shown in Fig. 1: the difference between the received phase
and a voltage controlled oscillator (VCO) phase is filtered and
used to steer the VCO, so that the VCO phase tracks the
received phase. Designers of PLLs select a loop filter to meet
performance requirements, usually specified in terms of band-
width, gain margin, and dynamic errors. Design methods for
analog PLLs are well documented in the literature (Refs, 1

and 2).

It is assumed here that the DPLL is characterized by con-
stant loop update rate. Discussion of DPLLs with variable
loop update rate is provided in Refs. 3-6. DPLLs with fixed

update rate can be designed either by analogy to continuous
domain PLLs or based on an optimality criterion.

Design by analogy to continuous-time PLLs, i.e., applying
s-plane design rules by translation to the z-plane, suffers from
two major disadvantages, The design is based on iteratively
placing open-loop poles and zeroes at “well chosen” locations
until satisfactory performance is achieved, Such locations are
selected based on design experience rather than on a well
established set of rules. Also, the design does not account for
the transport.delay in the digital loop, caused by hardware and
loop filter computations. This delay is either “tolerated,”
i.e., the degradation due to the delay is analyzed and found to
be acceptable (Ref. 7), or “compensated” by the equivalent of
a lead-lag network (Ref. 8).
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Design based on an optimality criterion attempts to opti-
mize a concise performance measure, usually a weighted sum
of transient response, gain margin, and noise bandwidth. For
some c¢ases (Ref. 9), analytical expressions for the performance
measure can be obtained, and closed-form expressions for loop
filters defined.

The estimator-predictor approach described in this article
offers an alternate method for DPLL design. The DPLL is
shown to be equivalent to an estimator followed by a predic-
tor, compensating for the transport lag. The estimator derives
an estimate of the state vector, consisting of phase, frequency,
and perhaps frequency rate, based on measurements of phase
alone. Selection of the specific estimator can then be based on
the vast resources available in linear optimal estimation theory.
In the next sections, a generic form of the design procedure is
presented, followed by a design example using specific esti-
mator, predictor, and for specified transport lags. Then, per-
formance of the designed loops is analyzed. A future study
will compare performance of loops designed using this ap-
proach to those designed according to alternative criteria.

Il. Design Approach

This section discusses the rationale for the new design
approach and then presents the resulting design procedure.
Time dependent variables, e.g., phase, are represented by their
z-plane transforms, and difference equations are replaced by
corresponding z-plane transfer functions. Even though the
notation does not explicitly account for time variation of
difference equation coefficients, such variations can be accom-
modated by the design procedure.

A. Rationale

The basic purpose of a DPLL is to generate a signal, with
phase 8(z), that approximates 6 (z), the phase of a received
signal, as shown in Fig. 1. From a linear estimation theory
viewpoint, this is a pure and simple estimation problem, and
the solution is straightforward. First, a linear state model for
0(z) is defined, with a corresponding measurement model.
Then, statistical models for state (or process) noise and mea-
surement noise are developed. Finally, an appropriate esti-
mator is selected (a fixed-coefficient, recursive least squares
estimator is a prime candidate).

There is a slight complication since a non-zero transport
delay is associated with DPLL mechanization. The effect of
this delay can be compensated by a predictor that extrapolates
the state estimate by an appropriate time interval. Thus, the
closed-loop DPLL transfer function has the form:

H(z) = D(z)C(z) N (1)
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where

H(z) = closed-loop DPLL transfer function

D(z) = predictor transfer function
C(z) = estimator transfer function
N = DPLL transport lag, in units of loop update time

Equation (1) assumes that the DPLL is updated at uni-
formly spaced time points, with update interval of T, hence
the transport lag is an integer multiple of T. Figure 2 shows a
DPLL structure that addresses Eq. (1). The three functional
blocks on the right are the elements of H(z): estimator, pre-
dictor, and transport lag. In addition, the figure incorporates
a phase detector, with gain 4, and another summing junction,
Note that, when phase detector gain has a nominal value of
A =1, the feedback is cancelled, and closed-loop transfer
function is H(z), as in Eq. (1). The closed-loop transfer func-
tion, for general phase detector gain, is denoted P(z).

The transformation of Fig. 2 into an implementation-
oriented structure is presented in Figs. 3 and 4. In Fig. 3, the
estimator-predictor-delay combination is replaced by actual
components: a digital filter, $(z), and a numerically controlled
oscillator, @(z), where S(z) satisfies:

Finally, Fig. 4 itlustrates a proposed DPLL implementation.
Phase detection and “hardware numerically controlled oscil-
lator (NCO)” functions are performed by custom circuitry,
while summing junction, S(z), and “software NCO” functions
are executed in a computer. Both “hardware NCO” and “soft-
ware NCO” have identical mathematical representations, as
the latter simulates the operation of the former. When com-
paring Figs. 1 and 4, it is apparent that the function of the
loop filter is performed, in Fig. 4, by the inner loop, imple-
mented in the computer-resident portion of the DPLL.

B. Design Procedure

The design can be divided into five distinct steps. The first
step is to select a model for the received phase process. This
model can include the process dynamics and statistics on
process noises and measurement noise. The second step is to
model the hardware: NCO, transport lag, and phase detector.
As shown later, the transport lag usually can be incorporated
as part of the transfer function of the NCO, Q(z).

The next step is selection of an estimator, based on phase
model and process noise and measurement noise covariance
matrices. Possible realizations of the estimator are some varia-




tions of Kalman filters, or other least squares estimators. The
fourth step is determination of a predictor to compensate for
transport lag. The last, but definitely not the least, step is to
assure that the loop is stable.

Il. Design Example

In this section, the design approach presented above is
implemented for a particular case.

A. Model of Received Phase

Two separate models are used for the received phase. The
first model has two state variables: phase and frequency,
while the second model uses three state variables: phase,
frequency and frequency rate. Later, these models will be
addressed as second- and third-order models, respectively.

B. Model of Phase Detector and NCO

The phase detector inputs are actually time continuous
signals. The phase detector measures the average phase differ-
ence between the phase of the input process and the NCO
phase. This is equivalent to the difference between the phase
of the input process and the NCO phase. Thus, 8(z) repre-
sents the input phase, averaged over the measurement interval,
and @ (z) represents the NCO phase, averaged over the same
interval.

Hurd and Aguirre (Ref. 7) and Simon and Mileant (Ref. 8)
discuss a general form for a DPLL NCO, The NCO is updated
gT seconds after the phase measurement is made, where T
is the loop update interval and 0 << g < 1. The case g=0
corresponds to NCO update immediately following the mea-
surement, while g=1 is caused by a T-second delay before the
NCO update. Such a delay occurs in practical systems while
the computer determines the next NCO input. Q(z) is the
transfer function between the NCO input and the average
NCO phase at the next measurement, including all delays.
This transfer function is:

(1-22%z*+(1+2-2%)z+g>

=T
e 22%(z-1) @)

In particular, for the cases g=0 and g=1, Q(z) has the
simple forms:

g=0: 0@ = L2 o @
g=1: 0@ = 3 24 2 5)

We observe that in Egs. (4) and (5), the NCO function can
be separated into two parts: integer number of delays, and a
kernal, Q,(z). Q,(z) is characterized by a numerator and
a denominator of the same degree. The cases of g=0 and g=1
are then examples of V=1 and N=2 computational delays,
respectively. The general expressions for a delay of N update
times is:

Q(Z)'—‘ET z+1

e N YO e 0)

In particular, cases with N =34 ... correspond to pipelined
feedback computations.

C. Selection of an Estimator

For this example, we select a least squares, fading memory
estimator, with fixed gains (Ref. 10). The estimator computes
a state estimate based on a set of measurements, applying an
exponentially decaying weight to past data. This “aging func-
tion” effectively discards measurements that are older than
three or four estimator time constants. The estimator transfer
functions for fixed or steady state gain are presented in
Table 1, and depend on a single parameter, «, a decay factor:

)]
where 7 is the estimator time constant.

D. Selection of a Predictor

The predictor generates a phase predict by extrapolating
the current phase estimate using either an estimate of fre-
quency, for a second-order model, or estimates of frequency
and frequency rate, for a third-order model. The extrapolation
time, VT, is the number of integer delays in the loop multi-
plied by the update interval. Predictor equations are given in
Table 2.

E. Loop Transfer Functions

Recall from Eq. (1) that the transfer function H(z) equals
D(z)C(z) z~¥. Thus, in this example, H(z) depends only on
the order of the phase model, the number of delays, and the
estimator decay factor, a. The open loop, G(z), closed loop,
P(z), and error, £(z), transfer functions for the DPLL are
easily expressed in terms of the function £,(z) =1 - H(z):

0@) _ AHG) _ A(-E() @)
66) " T-HE) T EG)

G(z) =
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_ik) _ _G@  _ AH(z)
P@z) = ﬁz‘% T1+6GGE) 1+@-DHE)

A(l - E,(2))

T T+@-D{ -E,G) ®

E\(z)

9(z) _ =
E(z) = 9@ - 1-P@) = 1+A-DA-E @) (10)

@)

where ¢(z) is the z-transform of the phase out of the phase
detector, not including phase detector gain, i.e., ¢(z) =0(z) -
8 (z). Expressions for E, (z) are presented in Table 3. A special
case of interest occurs when the phase detector gain, 4, has its
nominal value, 4 = 1. Then:

Hz) .
-H@) ’

P(z) = HE) ; E(2) = E(2)

(1

G(z) = ]

F. Realizability and Stability

The DPLL structure of Fig. 4 has three blocks that need to
be realized: a “hardware NCO,” a “software NCO” and a
digital filter S(z). The “hardware NCO” is realizable by defi-
nition. The “software NCO” is a mere simulation of the
“hardware NCO” function and is thus realizable. This leaves
the digital filter S(z). A necessary and sufficient condition for
the realizability of this filter is that the order of the numerator
is less or equal to that of the denominator (Ref. 11). Recall,
from Eqs. (2) and (6) that S(z) = D(z) C(z)/Q,(z). Since the
above condition is satisfied for each component of C(z)
(Ref. 10), it is also true for D(z) C(z) (the predictor merely
computes a fixed weight sum of components of C(z)). The
above condition is also satisfied for 1/Q,(z) (see Eq. 6).
Thus, S(z) is realizable.

In this section, we restrict the stability discussion to the
nominal operating point, 4 = 1, with analysis of the range of
stable operating conditions deferred to Section IV. When
A =1, the closed loop function is:

P(z) = H(z) = 1-E () (12)

Equation (12), combined with Table 3, shows that P(z)
has poles at z = « and at z = 0. Since a is real and satisfies
0 < a < 1, all the poles of P(z) are inside the unit circle and
the closed-loop transfer function is stable. Gain margin is com-
puted in the next section.

Even though P(z) is stable, special care must be exercised
in the implementation of S(z). Note that Q,(z) has a zero at
z = =1; thus, S(z) has a pole at that point. This means that
S(z), were it not a part of the feedback loop, would be mar-
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ginally stable. H(z) is stable since the pole at z = -1, contrib-
uted by S(z), is cancelled by the zero of Q(z) at the same
location. To maintain numerical stability, this pole of S(z)
may be moved slightly into the unit circle. In Section IV, we
demonstrate that this shift in pole location has negligible
effect on loop performance.

IV. Performance Analysis

In this section, performance of the loops is analyzed from
three aspects. First, loop type and errors due to dynamics of
the received phase are evaluated, then loop bandwidths are
determined, and, finally, gain margins are computed. Discus-
sions of dynamic errors and loop bandwidths is restricted to
the nominal operating point, A= 1.

A. Loop Type and Dynamic Tracking Errors

Loop type is defined as the number of integrators in the
open loop transfer function, i.e., the number of poles of
G(z) at z = 1. At the operating point, G(z) is equal to H(z)/
E,(z) forcing the poles of G(z) to be either poles of H(z) or
zeroes of E(z). However, H(z) has no poles at z = 1, and
£, (z) has as many zeros at z = 1 as the order of the estimator;
thus, second- and third-order phase models correspond to
type 1l and type III loops, respectively. We observe that while
loop type is independent of the number of computational
delays, order of polynomials in the transfer functions strongly
depends on the number of delays. Specifically, the orders of
the numerator and denominator of E,(z) are equal to the
loop type plus NV - 1, where ¥ is the number of delays.

The steady state phase error for constant dynamics is com-
puted using the final value theorem:

E_ = lim ZZ;I E@)0() (13)

z~1

It is well known that a type Il loop has zero phase error for
phase ramp, constant (non-zero) phase error for phase accel-
eration, and infinite phase error for phase jerk, or higher
dynamics. Similarly, a type III loop has zero, constant, and
infinite phase errors for phase acceleration, jerk, and higher
dynamics, respectively. Thus, the dynamics of interest are
phase acceleration for a type 11 loop, and phase jerk for type
Il loop. Table 4 lists the steady state phase errors for the
types II and III loops, at the operating point A = 1. Figure 5
shows these phase errors as functions of the normalized value
of the estimator time constant. The inputs are unit phase
acceleration, e.g., rad/s?, for a type Il loop and unit phase jerk
for a type III loop, and the errors are in consistent units. As
the estimator time constant increases, the phase error in-
creases. In fact, for T << 7 and &V = 1, the normalized phase




errors are 72 and 73 for type 1l and type III loops, respec-
tively. Phase errors also increase slightly with increase in _the
number of delays. This is caused by the increased prediction
error.

One must remember that, were a predictor not included,
increased delays would have caused catastrophic performance
degradation. As an exercise, the interested reader can derive
expressions for E, (z), when no prediction is used, i.e.,

D) = (1,0) or D(z) = (1,0,0) (14)

and prove that both second- and third-order estimators result
in type Iloops.

B. Bandwidth Resuits
One-sided bandwidth of the loop is defined as:

b 1 1 -1y 42
B, = 5T PR 21”.-/‘;hP(z)1‘7(z ) p (15)

where P(z) is the closed-loop transfer function, and the inte-
gral is evaluated along the unit circle. At the desired operating
point, 4 = 1, P(z) = H(z), and the integral can be written as:

2
dx (16)

1 1
BT =5 f ‘H(ez"”‘)
0

The quantity B,T is also called normalized bandwidth.
Equation (16) uses the fact that in our example, at z = 1,
H(z) is unity, as can be verified from the definitions in Sec-
tion II. The integral was numerically evaluated for different
estimators and delays, Figure 6 shows the bandwidth as a
function of the estimator time constant and NV for type Il and
type III loops, We observe that the introduction of extra
delays in the loop increases the noise bandwidth for a fixed
time constant, but the effect of the delays is less significant as
the estimator time constant increases.

C. Stability and Gain Margin

Let us first discuss the closed-loop root loci for the designed
DPLL, Recall the definition of the open loop transfer function
in Eq. (8). The open-loop transfer function G(z) has zeros at
the zeros of H(z) and poles at the zeros of E, (z); thus, with
increase of the phase detector gain 4, the poles of P(z) move
from the zeros of E, (z) to the zeros of H(z).

Figure 7 shows rootlocus plots for type II and III loops,
for N = 2. The transfer function £, (z), for a type Il loop, has

three zeros, two at z = 1 and one at z = -2(1 - a). In Fig. 7(a)
we observe that at low gain, the poles of P(z) are near these
points; then, as the gain increases, they move within the unit
circle. Eventually, with higher gains, the poles of P(z) go out-
side the unit circle and stability is lost. The root locus for a
type III loop, illustrated in Fig. 7(b), has a similar form,
except that at low gain roots may occur outside the unit circle,
nearz = 1.

As shown previously, the design can be marginally stable
due to cancellation of a pole of S(z) by a zero of the NCO. To
assure stability, this §(z) pole at z = -1 is slightly shifted to the
inside of the unit circle. Effect of this shift in pole location is
demonstrated in Figs. 7(c) and 7(d). These figures repeat the
cases given in Figs. 7(a) and 7(b), with the pole shifted to
z = -0.98, There is an exira root locus branch from z = -1.0
toward z = -0.98, with negligible effect on the rest of the root
locus. In fact, since the whole root locus branch is inside the
unit circle, an arbitrarily small shift in pole location is suffi-
cient to guarantee loop stability. This small shift in pole
location has a negligible effect on the three loop parameters
of interest: dynamic phase error, gain margin, and noise
bandwidth,

Locations of the poles of the closed-loop transfer function
at the operating point are of special importance. These poles
are commonly selected to be on the real axis to avoid insta-
bility and oscillations when the gain A changes slightly. At
the operating point, A = 1, the closed loop transfer function is
H(z). For the estimator-predictor in our example, H(z) has
poles at z = 0 and two or three co-located poles at z = a for the
second- and third-order estimators, respectively. This feature,
real closed-loop transfer function poles at the operating point,
assures stability.

Gain margin measures the effect of the phase detector gain,
A, on the stability of the closed loop. It is defined as the ratio
of the critical gain, i.¢., gain that forces the poles of the
transfer function outside the unit circle, to the nominal unity
gain. Figure 8 shows the relationship between upper gain mar-
gin and normalized bandwidth. Here, as the loop becomes
wider, the gain margin decreases. Similar results are presented
in Fig. 9 for the lower gain margin of the type Il loop. Note
that the lower gain margin for the type II loop is infinity.
These figures are useful for quick design evaluation, e.g.,
finding a favorable trade-off between any two variables.

D. Approximation Formulas

Figures 8 and 9 presented a trade-off between gain margin
and normalized loop bandwidth, B, T. Similar results can be
obtained for a trade-off between dynamic errors and B, T.
Since dynamic phase error, E,,, is approximately inversely
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proportional to the second or third power of the normalized
bandwidth, we define phase error coefficients, C¢2 and C¢3,
so that the steady state phase errors due to unit acceleration or
jerk are:

C 2
Second-order estimator:  E_ = {2 a7
o0 BL
G \°
Third-order estimator: E_ =(=2 (18)

These coefficients exhibit slower variation with B; T than
do the dynamic phase errors. Figure 10 shows the phase coef-
ficients as functions of normalized bandwidths. The phase
coefficients, for narrow normalized bandwidths, are less than
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1 for type II loops and slightly over 1 for type 1II loops, and
they increase slowly with increased bandwidths.

Approximation formulas were also derived for dynamic
phase error and gain margin as functions of the one-sided
bandwidth, B, . The resulting equations are valid for B, 7 < 0.1
and NV = 2, though the dependence of N is weak. Table 5 sum-
marizes the equations.

V. Conclusions

Using an estimation theory approach, design of a DPLL can
be accomplished in a systematic procedure rather than a trial-
and-error approach. The examples presented here, second- or
third-order fixed gain, fading memory estimators, are useful
for many applications, and the resulting design curves may
thus be directly applied. It is proposed that the design proce-
dure be applied to the DSN Advanced Receiver Carrier DPLL,




10.

11.

References

. Gardner, F. M., Phaselock Techniques, John Wiley and Sons, 1979.

Best, R. E., Phase Locked Loops, Theory, Design and Applications, Mcgraw Hill,
1984. '

Gill, G. S., and Gupta, S. C., “First Order Discrete Phase Locked Loops with Applica-
tions to Demodulation of Angle Modulated Carrier,” JEEE Trans. on Communica-
tion Technology, Vol. COM-20, pp. 454-462, June 1972.

Weinberg, A., and Liu, B., “Discrete Time Analysis of Nonuniform Sampling First-
and Second-Order Digital Phase Locked Loops,” IEEE Tyans. on Communication
Technology, Vol. COM-22, pp. 123-137, Feb. 1974.

Osborne, H. C., “Stability Analysis of Nth Power Digital Phase Locked Loop —
Part 1. First Order DPLLs,” IEEE Trans., on Communication Technology, Vol.
COM-28, pp. 1343-1354, Aug. 1980.

Osborne, H. C., “Stability Analysis of Nth Power Digital Phase Locked Loop —
Part II: Second- and Third-Order DPLL’s,” IEEE Trans. on Communication Tech-
nology, Vol. COM-28, pp. 1355-1364, Aug. 1980.

Aguirre, S., and Hurd, W. J., “Design and Performance of Sampled Data Loops for
Subcarrier and Carrier Tracking,” TDA Progress Report 42-79, pp. 81-95, Jet
Propulsion Laboratory, Pasadena, CA, Nov. 1984.

Simon, M. K., and Mileant, A., “Performance of the DSA’s Subcarrier Demodulation
Digital Loop,” TDA Progress Report 42-80, pp. 180-194, Jet Propulsion Labora-
tory, Pasadena, CA, Feb. 1985.

Kumar, R., and Hurd, W. J., “A Class of Optimum Digital Phase Locked Loops for

the DSN Advanced Receiver,” TDA Progress Report 42-83, pp. 63-80, Jet Propul-

sion Laboratory, Pasadena, CA, Nov. 1985,

Statman, J., “A Recursive Solution for a Fading Memory Filter Derived From Kal-
man Filter Theory,” TDA Progress Report 42-86 (this issue).

Oppenheim, A. V., and Schafer, R. W., Digital Signal Processing, Prentice-Hall,
N.J., 1975,

83




84

Table 1. Closed form transfer functions from input phase to output parameter

Qutside Second-Order

Parameter Estimator Third-Order Estimator

—a2 - X
a ‘”Z(z 21+a) (1 -0) z((@® + a+ 1) z2 - 3a(l + &) z + 3a?)

Phase
(z ~ ®)? - a)?
Frequency (1-w2z(z~1) (A-0)z(z-1(G3 - 3e¢2) z + 502 - da = 1)
T(z --oz)2 2T (z - a)3

(1-a)3z(z -1)2

Frequency rate -
T2(z - 0)3

Table 2. Predictor formulas

Predictor Second-Order Estimator Third-Ozder Estimator

2
D) (1L,NT) (l,NT, (NTD)
Table 3. Formulas for E,(z)
N Second-Order Estimator Third-Order Estimator
1 (z-1)% z-1)3
(- 0)? (- 03
5 z-1D2 z+21-a) z-13 z+43(1-q)
(z - @)? z z -3 z
3 @-12 z22+2(1-0)z+ (a2 ~4a+3) z-13 22+3(1-a)z+(3e¢2-9%+6)

z - a)? z2 - )3 z2




Table 4. Steady state phase errors due to dynamics (phase units)

Second-Order Estimator Third-Order Estimator
=L 2) ( =1 3)
(9 ® =5t 0 =%t
I T
(1-o)? (1~a)3
2 3
T 3-2) " (4-30)
(1-w? (1-a)3
2 3
T (2-6a+6) T (3a2-120+10)
(1-a)? (1-o?

Table 5. Approximation formulas

Second-Order . .
DPLL Parameter Estimator Third-Order Estimator
0.53 0.89
Gain margin (g,,,) —_— -
m (BLT)O‘9 (BLT)O'75
0.87y 2 1.17,3
Dynamic lag (£,,) a <—) j (M>
By By,
E,, = units (e.g., rad)
@ = acceleration, units/s? (e.g., rad/s?)
f =

= jerk, units/s3 (e.g., rad/s)
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Fig. 3. DPLL physical block diagram

Fig. 1. Traditional phase-locked loop
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Fig. 2. DPLL functional block diagram
Fig. 4. Proposed DPLL implementation
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Fig. 5. Dynamic phase error versus estimator parameters
102 T T T T T T T T T 7]
B N=1 1
—— — — N = 2

- —— N=3 .
101 -
100 .
101 .
i } TYPE 111 ESTIMATOR |
- } TYPE Il ESTIMATOR -

1072 L I 1 1 | ) L I 1
100 101 102

ESTIMATOR TIME CONSTANT/ESTIMATOR SAMPLE TIME

Fig. 6. Loop bandwidth versus estimator parameters
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Fig. 7. Examples of root loci: (a) type Il loop; (b) type lit loop; (c) type Il loop with pole at z = —0.98; (d) type Il loop
with pole at z = —0.98
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Fig. 8. Upper gain margin versus normalized loop bandwidth
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